L'aggregazione di fibrille proteiche amiloidi è coinvolta in malattie come l'amiloidosi e persino nel morbo di Alzheimer (MA). Pertanto, la dissociazione di queste fibrille amiloidi è cruciale dal punto di vista biologico; ma, a causa della loro struttura rigida e impilata (simile a fogli sovrapposti) questa operazione è difficile.
Un gruppo di scienziati giapponesi ha esplorato l'uso del laser a elettroni liberi per abbattere questi aggregati. Questa tecnica potrebbe essere usata per il trattamento di malattie che coinvolgono l'aggregazione delle proteine amiloidi.
Le fibrille amiloidi sono un tipo di proteine/peptidi autoassemblati che assumono una formazione simile a fogli sovrapposti. Gli aggregati di fibrilla amiloide sono noti per essere la causa di diverse malattie, incluso il MA, e quindi è di immenso interesse scientifico capire come questi aggregati possono essere spezzati.
Alcuni tipi di fibrille amiloidi hanno anche un ruolo nella regolazione dell'espressione genica in alcuni organismi. Si ritiene inoltre che i formati simili a fibre che compaiono in questi aggregati fungano da impalcature su cui coltivare i biomateriali.
Pertanto, una tecnica idonea alla rottura ('dissociazione') delle fibrille proteiche amiloidi è fondamentale dal punto di vista del trattamento medico, della modifica delle strutture e delle funzioni biologiche e persino dell'ingegneria dei biomateriali.
Un gruppo collaborativo di scienziati giapponesi dell'IR Free Electron Laser Research Center dell'Università della Scienza di Tokyo e dell'Istituto di Ricerca Scientifica e Industriale dell'Università di Osaka, composto dal Dott. Takayasu Kawasaki, dal Prof Koichi Tsukiyama e dall'Asst. Prof. Akinori Irizawa, ha ora mostrato che si può usare un laser a elettroni liberi (FEL, free-electron laser) a infrarossi lontani (FIR, far-infrared), chiamato FIR-FEL, per scomporre aggregati di proteine amiloidi.
Il dott. Kawasaki, primo autore dello studio pubblicato di recente su Scientific Reports, afferma: "Volevamo dimostrare l'applicabilità dei laser forti a elettroni liberi nelle scienze della vita, e questa ricerca interdisciplinare l'ha reso possibile".
Studi precedenti avevano esaminato la dissociazione delle fibrille amiloidi, ma con scarso successo e risultati contrastanti. Poiché la loro dissociazione in acqua è difficile, in passato sono stati esplorati metodi fisici di dissociazione. I laser e le radiazioni elettromagnetiche sono usati per fabbricare e alterare strutturalmente / funzionalmente materiali chimici e biologici.
Tra i laser, il FIR-FEL è stato studiato molto poco, sebbene abbia un elevato potere di penetrazione e sia assorbito bene dai sistemi biologici. Viene anche usato negli studi di scansione dei tessuti, nella diagnostica del cancro e in biofisica. Kawasaki spiega: "Il nostro studio dimostra per la prima volta che il FIR-FEL è utile anche per abbattere la struttura aggregata in fibrille delle proteine".
Per il loro studio, i ricercatori hanno usato il peptide DFKNF a 5 residui come modello, perché il legame tra la sua fibrillazione e la patogenesi è già stabilito. Questo peptide si autoassembla in un foglio di fibrilla. Hanno scoperto che il FIR-FEL danneggia la conformazione rigida del foglio β (una delle poche strutture assunte dalle proteine) del peptide a 5 residui, creando piccoli fori sul film peptidico. I ricercatori hanno scoperto che il FIR-FEL interrompe anche i legami di idrogeno tra fogli beta adiacenti nella fibrilla e dà origine a peptidi liberi. Questa è chiamata 'dissociazione'.
Kawasaki e il team hanno quindi verificato la presenza di cambiamenti conformazionali nella fibrilla peptidica dopo l'irradiazione con FIR-FEL, analizzando i rapporti di 4 tipi di strutture secondarie di peptidi (α-elica, β-foglio, β-turn e altro). Hanno scoperto che la proporzione della conformazione del foglio β si è drasticamente ridotta, il che suggerisce che è stata interrotta la struttura rigida simile a un foglio della fibrilla.
Kawasaki afferma che un precedente studio aveva trovato efficace anche il mid-infrared (MIR) -FEL in questo senso. "Abbiamo confrontato gli effetti di MIR-FEL con quelli di FIR-FEL", afferma Kawasaki, "e abbiamo scoperto che sebbene MIR-FEL causi cambiamenti conformazionali negli aggregati di fibrille, non scompone le fibrille in modo così efficace come il FIR-FEL".
Usando la microscopia elettronica a scansione e le tecniche di colorazione dei marcatori, i ricercatori hanno anche confermato che il FIR-FEL provoca cambiamenti morfologici nelle fibrille. Kawasaki afferma: "Poiché i peptidi di fibrilla amiloide sono coinvolti nella regolazione delle funzioni biologiche e delle patologie, le tecniche di modifica fisica (come FIR-FEL) potrebbero essere usate anche per alterare le funzioni biologiche di queste macromolecole secondo necessità".
Poiché il FIR-FEL è più efficace del MIR-FEL, il FIR-FEL può essere usato per distruggere le fibrille amiloidi in profondità all'interno dei tessuti, come nel caso del MA, mentre il MIR-FEL può essere usato per rimuovere gli amiloidi dermici sulla superficie della pelle. Inoltre, poiché le proteine della fibrilla agiscono come impalcature per materiali biocompatibili, il FIR-FEL potrebbe essere usato nell'ingegneria dei biomateriali della medicina rigenerativa o nei sistemi di rilascio di farmaci nanocarrier (=micro trasportatori).
Per concludere, Kawasaki afferma eloquentemente:
"Per la prima volta al mondo, abbiamo scoperto che un aggregato rigido di fibrille amiloidi può essere efficacemente scomposto con un laser a elettroni liberi nella regione dei terahertz (lunghezza d'onda 50-100 micrometri).
"Il prossimo passo sarebbe capire come il FIR-FEL influisce sui diversi tipi di fibrille peptidiche. La nostra ricerca può alimentare lo sviluppo di nuovi trattamenti per malattie intrattabili come il MA e potrebbe anche aiutare lo sviluppo di nuovi metodi per manipolare la struttura dei materiali biocompatibili".
Fonte: Tokyo University of Science (> English text) - Traduzione di Franco Pellizzari.
Riferimenti: Takayasu Kawasaki, Koichi Tsukiyama & Akinori Irizawa. Dissolution of a fibrous peptide by terahertz free electron laser. Scientific Reports, 23 July 2019, DOI
Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.
Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer onlus di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.
Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.