Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Agganciare peptidi (lenti da bloccare) apre un percorso per trattare l'Alzheimer

0823 AMYLOID 3 WEBSequenza dei modelli computazionali mostra come un peptide amiloide-beta (magenta) si aggancia e si blocca a una fibrilla amiloide. Le simulazioni hanno rivelato che nelle conformazioni intermedie nei passaggi da 2 a 5, è presente una frustrazione nell'associazione che può dare nuove opportunità di trattamento. (Fonte: Kaitlin Knapp / Rice University)

I progressi per un trattamento del morbo di Alzheimer (MA) sono stati frustantemente lenti. Un gruppo di scienziati di Houston suggerisce che la frustrazione a una scala molto ridotta può portare a un nuovo percorso di trattamento.


I ricercatori dell'Università di Houston (UH) e della Rice University, associati al Center for Theoretical Biological Physics (CTBP) della Rice, hanno scoperto attraverso esperimenti e calcoli che i peptidi amiloide-beta (Aβ), piccole molecole che sono abbondanti nel cervello, passano attraverso diverse fasi intermedie di frustrazione mentre 'si agganciano e si bloccano' sulle punte delle fibrille in crescita.


Le proteine in ​​piegatura tendono a cercare il modo più semplice per arrivare alla loro forme funzionale. Allo stesso modo, i peptidi Aβ cercano il modo più semplice per legare le punte delle fibrille in crescita, ma a volte sono tenuti indietro (frustrati) quando le forze positive e negative tra gli atomi non si allineano immediatamente.


Quando finalmente si allineano, le fibrille in crescita formano le placche gommose implicate nel MA e in altre malattie neurologiche. Una nuova ricerca pubblicata su PNAS mostra che si potrebbero sviluppare farmaci per sfruttare gli stadi intermedi frustrati dei peptidi, per stabilizzare le punte della fibrilla e bloccarne l'ulteriore aggregazione.


Peter Vekilov, ingegnere chimico e biomolecolare della UH, ha detto che non era stata una forzatura esaminare la crescita della fibrilla Aβ nel suo laboratorio:

"Studi precedenti, che hanno osservato le proteine ​​fibrilizzanti con un microscopio a forza atomica, si erano focalizzati su comportamenti più esotici perché le fibrille Aβ con un tasso costante di crescita sono noiose da osservare.

"Ma ero affascinato perché la correlazione del tasso di crescita alla concentrazione di peptidi nella soluzione porta molte informazioni. È di aiuto misurare la costante del tasso, una quantità che è facile da modellare".


Ha detto che Peter Wolynes, fisico della Rice, il cui laboratorio è specializzato nel costruire modelli computerizzati di proteine ​​e di piegatura di cromosomi, ha suggerito che interrompendo la crescita costante con urea, nota per impoverire (o dispiegare) le proteine, si potrebbero ottenere dati utili su come si formano le fibrille Aβ. Lo ha fatto sicuramente secondo Vekilov:

"È successa una cosa strana. L'urea ha reso le fibrille meno stabili, il che significava che i legami tra le molecole nelle fibrille erano meno forti. Ma le ha anche fatte crescere più velocemente.

"Questa è una grave contraddizione, una violazione delle regole empiriche della chimica. Ma ci sono regole empiriche, e poi ci sono leggi fondamentali. Abbiamo pensato che questo sta cercando di dirci qualcosa".

"Ulteriori esperimenti hanno dimostrato che l'urea destabilizzava i legami sbagliati del peptide. Ha fatto crescere la fibrilla più velocemente, ma ci ha mostrato anche i passaggi intermedi frustrati. La cosa importante è che ora abbiamo prove che alla fine della fibrilla c'è una corona di catene peptidiche frustrate e disordinate che cercano di agganciarsi e bloccarsi, e questi sono obiettivi per farmaci.

"È irrazionale bloccare ogni singolo peptide, perché probabilmente ce ne sono 100.000 volte di più delle punte di fibrilla. La bellezza di ciò che abbiamo trovato è che la punta della fibrilla è un tallone di Achille della fibrilizzazione, e tutto ciò che dobbiamo fare è bloccare il complesso alla punta".


Wolynes ha notato che c'erano segni di frustrazione in uno studio precedente che aveva visto evidenze di intralci nell'aggregazione della fibrilla:

"Due cose sono emerse dagli esperimenti. Una è che quasi tutti i modelli cinetici usati dai ricercatori per la crescita dell'Aβ sono troppo semplici. Questo non è inaspettato. L'altra è che l'impoverimento cambia l'equilibrio e può anche modificare il tasso di piegatura in modi che ti dicono dove appaiono gli stadi delle transizioni.

"Nella ricerca precedente sulla nucleazione della fibrilla, abbiamo osservato che sembrava ci fossero alcuni strani processi in cui le proteine dovevano tornare indietro dallo stato di transizione. Così Peter ha studiato questo, e penso che sia la prima persona a farlo".

"Avere un modo per impedire alle fibrille di crescere può aiutare a risolvere un disaccordo di lunga data tra gli scienziati sul fatto che le fibrille causino malattie neurologiche o proteggano il cervello da un altro sospetto, in particolare le proteine ​​tau aggrovigliate.

"La nostra idea è di avvelenare la punta in modo che non possa crescere, piuttosto che destabilizzare l'intera fibrilla. Questo, ovviamente, entra nel grande dibattito se le fibrille sono buone o cattive".


I modelli computazionali potrebbero mostrare che l'arresto delle fibrille potrebbe arginare gli effetti del MA o peggiorarlo. Indipendentemente, Wolynes ha detto che gli scienziati avranno una risposta più definitiva:

"A mio parere, ciò che è interessante qui è fornire un nuovo obiettivo, e esploreremo alcuni possibili farmaci che potrebbero cambiare la natura della punta. In ogni caso, quelle molecole forniranno strumenti interessanti per capire come avviene la crescita della fibrilla".

 

 

 

 


Fonte: Mike Williams in Rice University (> English) - Traduzione di Franco Pellizzari.

Riferimenti: Yuechuan Xu, Kaitlin Knapp, Kyle Le, Nicholas Schafer, Mohammad Safari, Aram Davtyan, Peter Wolynes, Peter Vekilov. Frustrated peptide chains at the fibril tip control the kinetics of growth of amyloid-β fibrils. PNAS, 2021, DOI

Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 

Notizie da non perdere

Laser a infrarossi distrugge le placche di amiloide nell'Alzheimer

7.08.2020 | Ricerche

L'aggregazione di proteine ​​in strutture chiamate 'placche amiloidi' è una caratteristi...

Identificata nuova forma di Alzheimer ad esordio molto precoce

16.06.2020 | Ricerche

Ricercatori della Mayo Clinic hanno definito una forma di morbo di Alzheimer (MA) che co...

Pressione bassa potrebbe essere uno dei colpevoli della demenza

2.10.2019 | Esperienze & Opinioni

Invecchiando, le persone spesso hanno un declino della funzione cerebrale e spesso si pr...

Studio rivela dove vengono memorizzati i frammenti di memoria

22.07.2022 | Ricerche

Un momento indimenticabile in un ristorante può non essere esclusivamente il cibo. Gli o...

Smontata teoria prevalente sull'Alzheimer: dipende dalla Tau, non dall�…

2.11.2014 | Ricerche

Una nuova ricerca che altera drasticamente la teoria prevalente sull'or...

Scienziati dicono che si possono recuperare i 'ricordi persi' per l…

4.08.2017 | Ricerche

Dei ricordi dimenticati sono stati risvegliati nei topi con Alzheimer, suggerendo che la...

Invertita per la prima volta la perdita di memoria associata all'Alzheime…

1.10.2014 | Ricerche

La paziente uno aveva avuto due anni di perdita progressiva di memoria...

Le cellule immunitarie sono un alleato, non un nemico, nella lotta all'Al…

30.01.2015 | Ricerche

L'amiloide-beta è una proteina appiccicosa che si aggrega e forma picco...

Dosi basse di radiazioni possono migliorare la qualità di vita nell'Alzhe…

6.05.2021 | Ricerche

Individui con morbo di Alzheimer (MA) grave hanno mostrato notevoli miglioramenti nel co...

A 18 come a 80 anni, lo stile di vita è più importante dell'età per il ri…

22.07.2022 | Ricerche

Gli individui senza fattori di rischio per la demenza, come fumo, diabete o perdita dell...

'Scioccante': dopo un danno, i neuroni si auto-riparano ripartendo d…

17.04.2020 | Ricerche

Quando le cellule cerebrali adulte sono ferite, ritornano ad uno stato embrionale, secon...

LATE: demenza con sintomi simili all'Alzheimer ma con cause diverse

3.05.2019 | Ricerche

È stato definito un disturbo cerebrale che imita i sintomi del morbo di Alzheimer (MA), ...

Paesi asiatici assistono gli anziani in modo diverso: ecco cosa possiamo impar…

28.10.2020 | Esperienze & Opinioni

A differenza dei paesi occidentali, le culture tradizionali asiatiche mettono un forte a...

Meccanismo neuroprotettivo alterato dai geni di rischio dell'Alzheimer

11.01.2022 | Ricerche

Il cervello ha un meccanismo naturale di protezione contro il morbo di Alzheimer (MA), e...

Il gas da uova marce potrebbe proteggere dall'Alzheimer

15.01.2021 | Ricerche

La reputazione dell'[[acido solfidrico]] (o idrogeno solforato), di solito considerato v...

Alzheimer, Parkinson e Huntington condividono una caratteristica cruciale

26.05.2017 | Ricerche

Uno studio eseguito alla Loyola University di Chicago ha scoperto che delle proteine ​​a...

Perché il diabete tipo 2 è un rischio importante per lo sviluppo dell'Alz…

24.03.2022 | Ricerche

Uno studio dell'Università di Osaka suggerisce un possibile meccanismo che collega il diabete all'Al...

L'Alzheimer inizia all'interno delle cellule nervose?

25.08.2021 | Ricerche

Uno studio sperimentale eseguito alla Lund University in Svezia ha rivelato che la prote...

Alzheimer e le sue proteine: bisogna essere in due per ballare il tango

21.04.2016 | Ricerche

Per anni, i neuroscienziati si sono chiesti come fanno le due proteine ​​anomale amiloid...

Con l'età cala drasticamente la capacità del cervello di eliminare le pro…

31.07.2015 | Ricerche

Il fattore di rischio più grande per l'Alzheimer è l'avanzare degli anni. Dopo i 65, il rischio r...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)