Le cellule cerebrali misteriose chiamate microglia, stanno iniziando a rivelare i loro segreti grazie a una ricerca condotta al Weizmann Institute of Science.
Fino a poco tempo fa, la maggior parte della gloria nella ricerca sul cervello era andata ai neuroni. Per più di un secolo, si è ritenuto che queste cellule, eccitabili elettricamente, effettuassero per intero l'elaborazione delle informazioni che rendono il cervello una macchina così sorprendente.
Al contrario, le cellule chiamate glia (che insieme rappresentano circa la metà del volume del cervello) erano considerate semplici riempitivi che davano sostegno e protezione ai neuroni, ma non eseguivano alcuna funzione vitale di loro. Infatti sono state chiamate glia, dal greco "colla", proprio perché erano considerate così poco sofisticate.
Ma negli ultimi anni, le cellule gliali - particolarmente le piccole microglia che costituiscono circa un decimo delle cellule cerebrali - hanno dimostrato di avere un ruolo cruciale sia nel cervello sano che in quello malato. Le microglia, a forma di polpi, sono cellule immunitarie che svolgono una sorveglianza costante, inglobando detriti cellulari o, in caso di infezione, microbi, per proteggere il cervello da lesioni o malattie. Ma queste cellule notevoli sono più dei detergenti: negli ultimi anni si è visto che sono coinvolte nella definizione delle reti neuronali, potando l'eccesso di sinapsi (i punti di contatto che permettono ai neuroni di trasmettere segnali) durante lo sviluppo embrionale.
Esse sono probabilmente coinvolte anche nel ridisegnare le sinapsi, quando sopravviene l'apprendimento e la memoria nel cervello adulto. Si ritiene che i difetti nella microglia contribuiscano a varie malattie neurologiche, tra cui l'Alzheimer e la sclerosi laterale amiotrofica o SLA. Chiarire esattamente come le microglia operano a livello molecolare, potrebbe permettere agli scienziati di sviluppare nuove terapie per queste patologie.
Più di un decennio fa il Prof. Steffen Jung del Weizmann Institute ha sviluppato un modello di topo transgenico che, per la prima volta, ha permesso agli scienziati di vedere le microglia altamente attive nel cervello vivo. Ora Jung ha fatto un passo successivo cruciale: il suo laboratorio ha sviluppato un sistema per indagare le funzioni delle microglia.
Gli scienziati hanno dotato i topi di un interruttore genetico: un enzima che può riorganizzare porzioni di DNA marcate in precedenza. L'interruttore viene attivato da un farmaco: quando il topo riceve il farmaco, l'enzima esegue una manipolazione genetica - per esempio, per disattivare un gene particolare. L'interruttore è progettato in modo che, a lungo termine, operi solo sulle microglia, e non su altre cellule nel cervello o nel resto dell'organismo. In questo modo, i ricercatori possono chiarire non solo la funzione delle microglia, ma i ruoli dei diversi geni nel loro meccanismo d'azione.
Come riportato su Nature Neuroscience, gli scienziati del Weizmann, in collaborazione con il team del Prof. Marco Prinz della Università di Friburgo in Germania, ha recentemente usato questo sistema per esaminare il ruolo di un gene infiammatorio espresso dalle microglia.
Il sistema sviluppato al Weizmann Institute, attualmente applicato in numerosi altri studi da ricercatori del Weizmann e altrove, promette di gettare nuova luce sul ruolo delle microglia nel cervello sano, così come nell'Alzheimer, nella SLA e in varie altre malattie.
La ricerca del Prof. Steffen Jung è finanziata dalle Leir Charitable Foundations; dal Leona M. and Harry B. Helmsley Charitable Trust; dalla Adelis Foundation; dalla Lord David Alliance, CBE; dal Wolfson Family Charitable Trust; dal Estate of Olga Klein Astrachan; e dal the European Research Council.
Fonte: Weizmann Institute of Science.
Riferimenti: Tobias Goldmann, Peter Wieghofer, Philippe F Müller, Yochai Wolf, Diana Varol, Simon Yona, Stefanie M Brendecke, Katrin Kierdorf, Ori Staszewski, Moumita Datta, Tom Luedde, Mathias Heikenwalder, Steffen Jung, Marco Prinz. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience, 2013; 16 (11): 1618 DOI: 10.1038/nn.3531
Pubblicato in wis-wander.weizmann.ac.il (> English version) - Traduzione di Franco Pellizzari.
Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.
Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari proposti da Google sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.
Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.
Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra: |