Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Speciale microscopio 4D coglie il movimento delle strutture del DNA, con possibili applicazioni per Alzheimer

Ogni grande struttura, dall'Empire State Building al Golden Gate Bridge, dipende da specifiche proprietà meccaniche per rimanere forte e affidabile. La rigidità di un materiale è di particolare importanza per il mantenimento della solidità e funzionalità di tutto, dagli edifici colossali alle minime strutture di scala nanometrica.

Nelle nanostrutture biologiche, come le reti di DNA, è stato finora difficile misurare la durezza, che è essenziale per le loro proprietà e funzioni. Ma scienziati del California Institute of Technology (Caltech) hanno recentemente messo a punto tecniche per visualizzare il comportamento di nanostrutture biologiche nello spazio e nel tempo, permettendo loro di misurarne direttamente la rigidità e mapparne la variazione all'interno della rete.


Usando gli elettroni nel microscopio, sono stati
tagliati diversi filamenti di DNA dalla pellicola di
carbonio (a sinistra) in modo da raggiungere una
struttura tridimensionale e autoportante al
microscopio 4D (a destra). (Credit: Zewail &
Lorenz/Caltech)


Il nuovo metodo è descritto nell'edizione del 4 Febbraio, dei Proceedings of the National Academy of Sciences (PNAS). "Questo tipo di visualizzazione ci sta portando dentro settori delle scienze biologiche mai esplorate prima", dice il premio Nobel Ahmed Zewail, professore Linus Pauling di chimica e professore di fisica al Caltech, coautore dello studio assieme a Ulrich Lorenz, studioso post-dottorato del laboratorio di Zewail. "Stiamo fornendo la metodologia per scoprire -direttamente- la rigidità di una rete biologica con proprietà su scala nanometrica".


Conoscere le proprietà meccaniche delle strutture di DNA è essenziale per creare robuste reti biologiche, tra le altre applicazioni. Secondo Zewail, questo tipo di visualizzazione della biomeccanica nello spazio e nel tempo dovrebbe essere applicabile allo studio di altri nanomateriali biologici, compresi i raggruppamenti di proteine anormali che sono alla base delle malattie come l'Alzheimer e il Parkinson.


Zewail e Lorenz hanno potuto vedere, per la prima volta, il movimento di nanostrutture di DNA nello spazio e nel tempo usando il microscopio elettronico quadridimensionale (4D) sviluppato al Physical Biology Center for Ultrafast Science and Technology del Caltech, diretto da Zewail, che lo ha creato nel 2005 per promuovere la comprensione della fisica fondamentale del comportamento chimico e biologico.


"In natura, il comportamento della materia è determinato dalla sua struttura (la disposizione dei suoi atomi nelle tre dimensioni dello spazio), e dal modo in cui la struttura cambia con il tempo, la quarta dimensione", spiega Zewail. "Se si guarda un cavallo al galoppo al rallentatore, è possibile seguire il tempo dei passi, e si può vedere in dettaglio, per esempio, ciò che ogni gamba sta facendo nel corso del tempo. Quando scendiamo alla scala nanometrica, questa è un'altra storia: abbiamo bisogno di migliorare la risoluzione spaziale del cavallo di un miliardo di volte, per visualizzare ciò che sta accadendo".


Zewail è stato insignito del Premio Nobel 1999 per la Chimica per lo sviluppo della femtochimica, che utilizza impulsi laser ultracorti per osservare le reazioni chimiche fondamentali che si verificano nella scala temporale del femtosecondo (un milionesimo di miliardesimo di secondo). Sebbene la femtochimica possa catturare atomi e molecole in movimento aggiungendo la dimensione temporale, non può mostrare contemporaneamente le dimensioni dello spazio, e quindi la struttura del materiale. Questo è perché utilizza la luce laser con lunghezze d'onda che vanno ben oltre la dimensione di una nanostruttura, rendendo impossibile risolvere e visualizzare dettagli in nanoscala di piccole strutture fisiche come il DNA.


Per superare questo ostacolo importante, il microscopio elettronico 4D impiega un flusso di elettroni singoli che disperdono oggetti e producono un'immagine. Gli elettroni sono accelerati a lunghezze d'onda di picometri, o trillioni (milione di milioni) di metro, consentendo di visualizzare la struttura nello spazio con una risoluzione mille volte superiore a quella di una nanostruttura, e con una risoluzione temporale di femtosecondi o di più. Gli esperimenti riportati in PNAS sono iniziati con una struttura creata tendendo del DNA sopra un foro incorporato in un film sottile di carbonio. Usando gli elettroni nel microscopio, sono stati tagliati diversi filamenti di DNA dalla pellicola di carbonio in modo da ottenere una struttura tridimensionale e autoportante sotto il microscopio 4D.


Successivamente, gli scienziati hanno impiegato il calore del laser per suscitare oscillazioni nella struttura del DNA, che sono state visualizzati mediante gli impulsi elettroni come funzione del tempo, la quarta dimensione. By observing the frequency and amplitude of these oscillations, a direct measure of stiffness was made. La misura diretta della rigidità è stata ottenuta osservando la frequenza e l'ampiezza di queste oscillazioni. "E' stato sorprendente riuscire a farlo con una rete complessa", dice Zewail. "Eppure tagliando e sondando, siamo riusciti ad entrare in una area selettiva della rete e conoscere il suo comportamento e proprietà".


Usando la microscopia elettronica 4D, il gruppo di Zewail ha cominciato a visualizzare i grumi di proteine chiamate amiloidi, che sono considerate protagoniste di molte malattie neurodegenerative
, e stanno continuando lo studio delle proprietà biomeccaniche di queste reti. Egli dice che questa tecnica può potenzialmente essere applicata in termini generali non solo ai gruppi biologici, ma anche nella scienza dei materiali delle nanostrutture.

I finanziamenti per la ricerca delineata nel documento PNAS, sono stati forniti dal National Science Foundation e dall'Ufficio dell'Air Force della ricerca scientifica. Il Physical Biology Center for Ultrafast Science and Technology del Caltech è sostenuto dalla Gordon and Betty Moore Foundation.

 

 

 

EnFlagRead the original English version of this article here.

 

 

***********************
Cosa pensi di questo articolo? Ti è stato utile? Hai rilievi, riserve, integrazioni? Conosci casi o ti è successo qualcosa che lo conferma? o lo smentisce? Puoi usare il modulo dei commenti qui sotto per dire la tua opinione. Che è importante e unica.

 

***********************
Fonte: Materiale del California Institute of Technology. Articolo originale scritto da Katie Neith.

Riferimento:
UJ Lorenz, AH Zewail. Biomechanics of DNA structures visualized by 4D electron microscopy. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1300630110.

Pubblicato in Science Daily il 11 Febbraio 2013 - Traduzione di Franco Pellizzari.

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari proposti da Google sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.

Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra:



Notizie da non perdere

Il girovita può predire il rischio di demenza?

6.11.2019 | Ricerche

Il primo studio di coorte su larga scala di questo tipo ha esaminato il legame tra il girovita in...

La consapevolezza di perdere la memoria può svanire 2-3 anni prima della compa…

27.08.2015 | Ricerche

Le persone che svilupperanno una demenza possono cominciare a perdere la consapevolezza dei propr...

Stimolazione dell'onda cerebrale può migliorare i sintomi di Alzheimer

15.03.2019 | Ricerche

Esponendo i topi a una combinazione unica di luce e suono, i neuroscienziati del Massach...

Capire l'origine dell'Alzheimer, cercare una cura

30.05.2018 | Ricerche

Dopo un decennio di lavoro, un team guidato dal dott. Gilbert Bernier, ricercatore di Hô...

'Scioccante': dopo un danno, i neuroni si auto-riparano ripartendo d…

17.04.2020 | Ricerche

Quando le cellule cerebrali adulte sono ferite, ritornano ad uno stato embrionale, secon...

Che speranza hai dopo la diagnosi di Alzheimer?

25.01.2021 | Esperienze & Opinioni

Il morbo di Alzheimer (MA) è una malattia che cambia davvero la vita, non solo per la pe...

L'impatto del sonno su cognizione, memoria e demenza

2.03.2023 | Ricerche

Riduci i disturbi del sonno per aiutare a prevenire il deterioramento del pensiero.

"Ci...

Alzheimer, Parkinson e Huntington condividono una caratteristica cruciale

26.05.2017 | Ricerche

Uno studio eseguito alla Loyola University di Chicago ha scoperto che delle proteine ​​a...

A 18 come a 80 anni, lo stile di vita è più importante dell'età per il ri…

22.07.2022 | Ricerche

Gli individui senza fattori di rischio per la demenza, come fumo, diabete o perdita dell...

Il ruolo sorprendente delle cellule immunitarie del cervello

21.12.2020 | Ricerche

Una parte importante del sistema immunitario del cervello, le cellule chiamate microglia...

Nuova teoria sulla formazione dei ricordi nel cervello

9.03.2021 | Ricerche

Una ricerca eseguita all'Università del Kent ha portato allo sviluppo della teoria MeshC...

LATE: demenza con sintomi simili all'Alzheimer ma con cause diverse

3.05.2019 | Ricerche

È stato definito un disturbo cerebrale che imita i sintomi del morbo di Alzheimer (MA), ...

Studio dimostra il ruolo dei batteri intestinali nelle neurodegenerazioni

7.10.2016 | Ricerche

L'Alzheimer (AD), il Parkinson (PD) e la sclerosi laterale amiotrofica (SLA) sono tutte ...

Paesi asiatici assistono gli anziani in modo diverso: ecco cosa possiamo impar…

28.10.2020 | Esperienze & Opinioni

A differenza dei paesi occidentali, le culture tradizionali asiatiche mettono un forte a...

Scoperta ulteriore 'barriera' anatomica che difende e monitora il ce…

11.01.2023 | Ricerche

Dalla complessità delle reti neurali, alle funzioni e strutture biologiche di base, il c...

Subiamo un 'lavaggio del cervello' durante il sonno?

4.11.2019 | Ricerche

Una nuova ricerca eseguita alla Boston University suggerisce che questa sera durante il ...

Scoperto nuovo colpevole del declino cognitivo nell'Alzheimer

7.02.2019 | Ricerche

È noto da tempo che i pazienti con morbo di Alzheimer (MA) hanno anomalie nella vasta re...

I dieci fattori legati a un aumento del rischio di Alzheimer

27.07.2020 | Esperienze & Opinioni

Anche se non c'è ancora alcuna cura, i ricercatori stanno continuando a migliorare la co...

Zen e mitocondri: il macchinario della morte rende più sana la vita

20.11.2023 | Ricerche

Sebbene tutti noi aspiriamo a una vita lunga, ciò che è più ambito è un lungo periodo di...

Invertita per la prima volta la perdita di memoria associata all'Alzheime…

1.10.2014 | Ricerche

La paziente uno aveva avuto due anni di perdita progressiva di memoria...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)