Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Protezione del cervello inizia dalle sinapsi

Una nuova ricerca di scienziati della University of California San Francisco dimostra che uno dei meccanismi di auto-protezione fondamentali del cervello dipende da un lavoro di squadra coordinato, finemente calibrato, tra i neuroni e le cellule non-neuronali (cellule gliali), che fino a poco tempo fa erano ritenute semplici cellule di supporto ai neuroni.


Lo studio, che ha implicazioni nella comprensione delle malattie neurodegenerative, dei disturbi del sistema nervoso, dell'ictus e altre, si aggiunge ad un crescente corpo di evidenze che le cellule gliali sono parte integrante della funzione cerebrale.


Poiché questo meccanismo è localizzato a livello delle sinapsi, i siti in cui avviene la comunicazione tra i neuroni, esso assicura che siano prese misure di protezione solo quando e dove sono più necessarie, ha detto Marta Margeta, MD, PhD, assistente professore di patologia e autrice senior del nuovo studio. "Il Presidente ha bisogno di più guardie del corpo di un Parlamentare, e con questo sistema si può avere la botte piena e la moglie ubriaca: la protezione quando c'è bisogno, e non dappertutto".


Il cervello è l'organo che lavora di più nel corpo, e consuma fino al 25 per cento della nostra energia globale. Questa richiesta metabolica rende le cellule del cervello particolarmente vulnerabili al danno da stress ossidativo, per cui le specie reattive dell'ossigeno (ROS), a volte chiamate radicali liberi, esercitano effetti tossici sui componenti cellulari. Il danno dei ROS ai neuroni è implicato nell'Alzheimer, nel Parkinson ed in altre malattie neurodegenerative.


Il cervello può essere gravemente danneggiato quando una malattia o un infortunio - specialmente un ictus - inducono i neuroni ad attivarsi ripetutamente, inondando il tessuto cerebrale con livelli tossici del neurotrasmettitore eccitatorio glutammato, una condizione nota come eccitotossicità. Per contrastare i danni potenziali derivanti dai ROS, dall'eccitotossicità e da altri pericoli, gli animali, compresi gli esseri umani, hanno sviluppato sofisticate difese fisiologiche come il percorso Nrf2, una rete molecolare che attiva l'espressione di una serie di geni protettivi, quando è in pericolo la funzionalità cellulare.


E' risaputo da Neuroscience 101 che i neuroni trasmettono i messaggi elettrochimici in siti di comunicazione chiamati sinapsi, ma è meno conosciuto che la stragrande maggioranza delle sinapsi sono "tripartite", cioé non si tratta solo di un neurone che invia un messaggio e uno che lo riceve, ma anche di una cellula gliale a forma di stella chiamata astrocito, situata accanto ad ogni sinapsi. Esperimenti in modelli di topi di Parkinson e di sclerosi laterale amiotrofica (SLA, o morbo di Lou Gehrig), hanno dimostrato che la protezione neurale basata su Nrf2 è conferita principalmente dagli astrociti, ma non é ancora chiaro in che modo i neuroni riescono ad allertare gli astrociti sulle condizioni stressanti.


Nella nuova ricerca (pubblicata il 21 ottobre nell'edizione anticipata online di Proceedings of National Academy of Sciences) Margeta, l'ex socia postdottorato Agata Habas, PhD, (ora alla UC San Diego) e i colleghi, hanno isolato il contributo relativo dei neuroni e degli astrociti nella segnalazione del Nrf2, eseguendo esperimenti su colture cellulari contenenti prevalentemente neuroni o prevalentemente astrociti o una miscela di entrambi.


Quando il team di ricerca ha cercato di attivare il percorso Nrf2 in colture prevalentemente neurali o di astrociti tramite immersione in una sostanza che crea le condizioni che mimano l'eccitotossicità, hanno avuto poco successo, ma nelle colture miste il percorso si è avviato. Questi esperimenti hanno dimostrato che sia i neuroni che gli astrociti sono necessari per l'attività del Nrf2.


Tuttavia, poiché i trattamenti hanno interessato le culture a livello globale e non puntavano proprio alle sinapsi, i ricercatori hanno in seguito applicato sostanze che aumentano l'attivazione dei neuroni del glutammato, agendo solo sui siti sinaptici. Anche in questo caso, l'attività legata al Nrf2 è stata osservata solo quando gli astrociti erano presenti nelle culture, ma, in modo significativo, la segnalazione Nrf2 è aumentata di pari passo con la scarica neuronale, il che suggerisce che i neuroni calibrano l'attività del Nrf2 sugli astrociti per tenere il passo con l'attività neurale.


Questa calibrazione precisa è rimasta intatta anche quando non c'era alcun contatto fisico tra i neuroni e gli astrociti in coltura, il che indica che i neuroni secernono qualche fattore solubile che attiva il Nrf2 negli astrociti.


Quando i neuroni eccitatori si attivano e rilasciano il neurotrasmettitore glutammato nella sinapsi, il glutammato rilasciato può raggiungere gli astrociti nelle vicinanze, e quindi il glutammato sembra un buon candidato come messaggero neuronale che induce l'attività del Nrf2. Per verificare questa idea, gli scienziati hanno applicato bloccanti del glutammato alle culture miste, fatto che in effetti ha impedito l'attivazione del Nrf2.


Tuttavia, l'applicazione diretta di glutammato agli astrociti non ha indotto attività del Nrf2, il che indica che il rilascio di glutammato è "necessario, ma non sufficiente" per regolamentare il Nrf2, e che la ricerca futura potrebbe rivelare che nella sinapsi sono al lavoro altri fattori, secondo la Margeta. Oltre al neurone presinaptico che secerne il glutammato, il neurone postsinaptico che riceve il segnale, anche gli astrociti stessi possono impiegare proprie molecole di segnalazione per mantenere il sistema in equilibrio, ha detto.


Secondo Margeta, il sistema di controllo scoperto dal suo laboratorio impedisce al cervello di sprecare energia nella protezione quando non è necessario. "Un eccesso di una cosa buona non va bene, e penso che è per questo che non c'è una regolazione precisa", ha spiegato la Margeta. "Questo sistema mantiene il Nrf2 basale piuttosto basso e sotto controllo, ma se succede qualcosa di brutto, è possibile attivare il sistema ed farlo crescere".

 

 

 

 

 


Fonte: University of California - San Francisco.

Riferimenti: A. Habas, J. Hahn, X. Wang, M. Margeta. Neuronal activity regulates astrocytic Nrf2 signaling. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1208764110

Pubblicato da Pete Farley in ucsf.edu (> English version) - Traduzione di Franco Pellizzari.

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari proposti da Google sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.

Sostieni l'Associazione; una donazione, anche minima, ci aiuterà ad assistere malati e famiglie e continuare ad informarti. Clicca qui a destra:

 


 

 

Notizie da non perdere

Scoperta inaspettata: proteine infiammatorie possono rallentare il declino cog…

5.07.2021 | Ricerche

Finora la ricerca aveva collegato l'infiammazione al morbo di Alzheimer (MA), però scien...

Età degli organi biologici prevede il rischio di malattia con decenni di antic…

11.03.2025 | Ricerche

I nostri organi invecchiano a ritmi diversi e un esame del sangue che determina quanto ciascuno è...

Dana Territo: 'La speranza può manifestarsi da molte fonti nella cerchia …

14.01.2025 | Esperienze & Opinioni

Come trovi speranza nel nuovo anno con una diagnosi di Alzheimer?

Avere speranza...

Laser a infrarossi distrugge le placche di amiloide nell'Alzheimer

7.08.2020 | Ricerche

L'aggregazione di proteine ​​in strutture chiamate 'placche amiloidi' è una caratteristi...

Districare la tau: ricercatori trovano 'obiettivo maneggiabile' per …

30.01.2019 | Ricerche

L'accumulo di placche di amiloide beta (Aβ) e grovigli di una proteina chiamata tau nel ...

Accumulo di proteine sulle gocce di grasso implicato nell'Alzheimer ad es…

21.02.2024 | Ricerche

In uno studio durato 5 anni, Sarah Cohen PhD, biologa cellulare della UNC e Ian Windham della Rockef...

'Evitare l'Alzheimer potrebbe essere più facile di quanto pensi'…

16.11.2018 | Esperienze & Opinioni

Hai l'insulino-resistenza? Se non lo sai, non sei sola/o. Questa è forse la domanda più ...

3 modi per trasformare l'auto-critica in auto-compassione

14.08.2018 | Esperienze & Opinioni

Hai mai sentito una vocina parlare nella tua testa, riempiendoti di insicurezza? Forse l...

Ecco perché alcune persone con marcatori cerebrali di Alzheimer non hanno deme…

17.08.2018 | Ricerche

Un nuovo studio condotto all'Università del Texas di Galveston ha scoperto perché alcune...

LATE: demenza con sintomi simili all'Alzheimer ma con cause diverse

3.05.2019 | Ricerche

È stato definito un disturbo cerebrale che imita i sintomi del morbo di Alzheimer (MA), ...

Smontata teoria prevalente sull'Alzheimer: dipende dalla Tau, non dall�…

2.11.2014 | Ricerche

Una nuova ricerca che altera drasticamente la teoria prevalente sull'or...

Demenza: mantenere vive le amicizie quando i ricordi svaniscono

16.01.2018 | Esperienze & Opinioni

C'è una parola che si sente spesso quando si parla con le famiglie di persone con demenz...

Sintomi visivi bizzarri potrebbero essere segni rivelatori dell'Alzheimer…

1.02.2024 | Ricerche

Un team di ricercatori internazionali, guidato dall'Università della California di San F...

Microglia: ‘cellule immunitarie’ che proteggono il cervello dalle malattie, ma…

28.05.2020 | Esperienze & Opinioni

Sappiamo che il sistema immunitario del corpo è importante per tenere tutto sotto controllo e per...

Rete nascosta di enzimi responsabile della perdita di sinapsi nell'Alzhei…

8.12.2020 | Ricerche

Un nuovo studio sul morbo di Alzheimer (MA) eseguito da scienziati dello Scripps Researc...

IFITM3: la proteina all'origine della formazione di placche nell'Alz…

4.09.2020 | Ricerche

Il morbo di Alzheimer (MA) è una malattia neurodegenerativa caratterizzata dall'accumulo...

Riprogrammare «cellule di supporto» in neuroni per riparare il cervello adulto…

21.11.2014 | Ricerche

La porzione del cervello adulto responsabile del pensiero complesso, la corteccia cerebrale, non ...

Studio dimostra il ruolo dei batteri intestinali nelle neurodegenerazioni

7.10.2016 | Ricerche

L'Alzheimer (AD), il Parkinson (PD) e la sclerosi laterale amiotrofica (SLA) sono tutte ...

Dott. Perlmutter: Sì, l'Alzheimer può essere invertito!

6.12.2018 | Ricerche

Sono spesso citato affermare che non esiste un approccio farmaceutico che abbia un'effic...

L'esercizio fisico dà benefici cognitivi ai pazienti di Alzheimer

29.06.2015 | Ricerche

Nel primo studio di questo tipo mai effettuato, dei ricercatori danesi hanno dimostrato che l'ese...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

Seguici su

 
enfrdeites

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.