Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


Ricordare a breve le informazioni implica archiviarle tra le sinapsi

Confrontando i modelli della memoria di lavoro con i dati del mondo reale, i ricercatori del MIT hanno scoperto che le informazioni non risiedono nell'attività neurale persistente, ma nello schema delle loro connessioni.

Tra il momento in cui leggi la password Wi-Fi nel cartello del bar e il momento che puoi inserirla nel tuo laptop, devi tenerla in mente. Se ti sei mai chiesto come lo fa il tuo cervello, stai facendo una domanda sulla memoria di lavoro, che i ricercatori tentano di capire da decenni. Ora i neuroscienziati del MIT hanno pubblicato una nuova intuizione chiave per spiegare come funziona.


In uno studio pubblicato su PLOS Computational Biology, gli scienziati del Picower Institute for Learning and Memory hanno confrontato le misurazioni dell'attività delle cellule cerebrali di un animale mentre eseguiva un compito di memoria di lavoro, con i dati calcolati da vari modelli di computer che rappresentavano 2 teorie del meccanismo che sottende il tenere a mente le informazioni.


I risultati erano fortemente favorevoli alla nuova nozione secondo cui una rete di neuroni memorizza le informazioni apportando cambiamenti di breve durata nello schema delle loro connessioni (sinapsi) e hanno confutato l'alternativa tradizionale secondo la quale la memoria è mantenuta da neuroni che rimangono costantemente attivi (come un motore al minimo).


Anche se entrambi i modelli consentivano di tenere a mente le informazioni, solo le versioni che inducevano le sinapsi a cambiare transitoriamente le connessioni ('plasticità sinaptica a breve termine') producevano modelli di attività neurale che imitavano ciò che si può in realtà osservare nei cervelli reali al lavoro.


L'idea che le cellule cerebrali mantengano i ricordi restando sempre 'accese' può essere più semplice, ha riconosciuto l'autore senior Earl K. Miller, ma non rappresenta ciò che succede in natura e non può produrre la flessibilità sofisticata del pensiero, che può derivare dall'attività neurale intermittente supportata dalla plasticità sinaptica a breve termine.


"Hai bisogno di questi tipi di meccanismi per dare all'attività della memoria di lavoro la libertà di cui ha bisogno per essere flessibile", ha affermato Miller, professore di neuroscienze del Dipartimento di Scienze Cerebrali e Cognitive (BCS) del MIT. “Se la memoria di lavoro fosse solo attività sostenuta, sarebbe semplice come un interruttore della luce. Ma la memoria di lavoro è complessa e dinamica come i nostri pensieri".


Il primo coautore Leo Kozachkov, neo dottorato di ricerca al MIT per il lavoro di modellazione teorica, che include questo studio, ha affermato che è stato cruciale abbinare i modelli di computer ai dati del mondo reale. Kozachkov ha affermato:


"La maggior parte dei ricercatori pensa che la memoria di lavoro 'accada' nei neuroni: l'attività neurale persistente dà origine a pensieri persistenti. Tuttavia, questo punto di vista è stato sottoposto a un recente controllo, perché in realtà non va d'accordo con i dati
.

“Usando reti neurali artificiali con plasticità sinaptica a breve termine, mostriamo che l'attività sinaptica (non quella neurale) può essere un substrato per la memoria di lavoro. L'informazione importante del nostro studio è che questi modelli di rete neurale 'plastica' sono più di tipo cerebrale, in senso quantitativo, e hanno anche ulteriori vantaggi funzionali in termini di robustezza".

 

Imitare con i modelli la natura

Assieme al primo coautore John Tauber del MIT, l'obiettivo di Kozachkov era non solo determinare come si riesce a tenere le informazioni nella memoria di lavoro, ma anche far luce su come la natura lo fa realmente. Ciò ha implicato iniziare misurando l'attività elettrica reale di 'sparo' di centinaia di neuroni nella corteccia prefrontale di un animale mentre eseguiva un gioco che impegna la memoria di lavoro.


In ciascuno dei tanti test, all'animale veniva mostrata un'immagine che poi scompariva. Un secondo dopo vedeva 2 immagini, compresa l'originale, e doveva guardare l'originale per guadagnare un po' di ricompensa. Il momento chiave è quel secondo di intervallo, chiamato 'periodo di ritardo', in cui l'immagine deve essere tenuta a mente prima del test.


Il team ha osservato costantemente ciò che il laboratorio di Miller ha visto molte volte prima: i neuroni 'sparano' molto quando vedono l'immagine originale, sparano solo a intermittenza durante il ritardo, e quindi sparano di nuovo quando le immagini devono essere richiamate durante il test (queste dinamiche sono governate da un'interazione di ritmi cerebrali di frequenza beta e gamma). In altre parole, lo sparo è forte quando le informazioni devono essere inizialmente archiviate e quando devono essere richiamate, ma è solo sporadico quando devono essere mantenute. Lo sparo non è persistente durante il posticipo.


Inoltre, il team ha addestrato i 'decodificatori' del software a leggere le informazioni sulla memoria di lavoro dalle misurazioni dell'attività di sparo. Erano molto precise quando lo sparo era frequente, ma non quando era rarefatto, come nel periodo di ritardo. Ciò ha suggerito che lo sparo non rappresenta le informazioni durante il ritardo. Ma ciò ha sollevato una domanda cruciale: se lo sparo non trattiene le informazioni, cosa lo fa?


I ricercatori, che comprendevano Mark Stokes all'Università di Oxford, hanno ipotizzato che le informazioni possono invece essere archiviate con cambiamenti nella forza relativa, o 'carichi' (weights), delle sinapsi. Il team del MIT ha testato quell'idea modellando al computer le reti neurali, inglobando 2 versioni di ciascuna teoria principale. Come per l'animale reale, le reti di apprendimento automatico sono state addestrate a svolgere lo stesso compito di memoria di lavoro e a produrre attività neurali che potrebbero anche essere interpretate da un decodificatore.


La conclusione è che le reti computazionali che hanno permesso alla plasticità sinaptica a breve termine di codificare le informazioni sparavano quando il cervello reale sparava e non lo facevano quando il cervello non sparava. Le reti che presentavano sparo costante, come metodo per mantenere la memoria, sparavano continuamente, incluso quando il cervello naturale non lo faceva. E i risultati del decodificatore hanno rivelato che l'accuratezza è crollata durante il periodo di ritardo nei modelli di plasticità sinaptica, ma è rimasta innaturalmente alta nei modelli di sparo persistente.


In un altro livello di analisi, il team ha creato un decodificatore per leggere le informazioni dai carichi sinaptici. Hanno scoperto che durante il periodo di ritardo, le sinapsi rappresentavano le informazioni della memoria di lavoro che lo sparo [dei neuroni] non rappresentava.


Tra le due versioni del modello che presentavano plasticità sinaptica a breve termine, la più realistica è stata chiamata 'PS-Hebb', che presenta un circuito di reazione negativo, mantenendo la rete neurale stabile e robusta, ha affermato Kozachkov.

 

Funzionamento della memoria di lavoro

Oltre che corrispondere meglio alla natura, i modelli di plasticità sinaptica hanno anche altri vantaggi che probabilmente contano per il cervello reale. Uno era che i modelli di plasticità hanno conservato le informazioni nei loro carichi sinaptici anche dopo che la metà dei neuroni artificiali era stata 'ablata' (asportata).


I modelli di attività persistenti si sono interrotti dopo aver perso solo il 10-20% delle loro sinapsi. E, ha aggiunto Miller, lo sparo solo occasionale richiede meno energia dello sparo persistente. Inoltre, ha detto Miller, raffiche rapide di sparo, piuttosto che sparo persistente, lascia più tempo per conservare più di un elemento in memoria. La ricerca ha dimostrato che le persone possono mantenere fino a 4 cose diverse nella memoria di lavoro.


I piani del laboratorio di Miller prevedono nuovi esperimenti per determinare se i modelli con sparo intermittente e immagazzinamento di informazioni basato sul carico sinaptico possono corrispondere in modo appropriato ai dati neurali reali quando gli animali devono tenere a mente più cose piuttosto che una sola.

 

 

 


Fonte: Picower Institute at MIT (> English) - Traduzione di Franco Pellizzari.

Riferimenti: L Kozachkov, ...[+4], EK Miller. Robust and brain-like working memory through short-term synaptic plasticity. PLOS Computational Biology, 2022, DOI

Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 

Notizie da non perdere

Curare l'Alzheimer: singolo proiettile magico o sparo di doppietta?

20.03.2025 | Esperienze & Opinioni

Perché i ricercatori stanno ancora annaspando nella ricerca di una cura per quella che è...

Il Protocollo Bredesen: si può invertire la perdita di memoria dell'Alzhe…

16.06.2016 | Annunci & info

I risultati della risonanza magnetica quantitativa e i test neuropsicologici hanno dimostrato dei...

Perché è importante la diagnosi precoce di demenza?

31.07.2020 | Esperienze & Opinioni

Vedere problemi di memoria nel tuo caro anziano può essere davvero spaventoso. Magari no...

'Tau, disfunzione sinaptica e lesioni neuroassonali si associano di più c…

26.05.2020 | Ricerche

Il morbo di Alzheimer (MA) comporta il deperimento caratteristico di alcune regioni del ...

Nuova teoria sulla formazione dei ricordi nel cervello

9.03.2021 | Ricerche

Una ricerca eseguita all'Università del Kent ha portato allo sviluppo della teoria MeshC...

Ricetta per una vita felice: ingredienti ordinari possono creare lo straordina…

9.09.2019 | Esperienze & Opinioni

Se potessi porre ad ogni essere umano sulla Terra una domanda - qual è la ricetta per un...

Un singolo trattamento genera nuovi neuroni, elimina neurodegenerazione nei to…

1.07.2020 | Ricerche

Xiang-Dong Fu PhD, non è mai stato così entusiasta di qualcosa in tutta la sua carriera...

Rivelato nuovo percorso che contribuisce all'Alzheimer ... oppure al canc…

21.09.2014 | Ricerche

Ricercatori del campus di Jacksonville della Mayo Clinic hanno scoperto...

Smetti di chiederti se sei un bravo caregiver

3.07.2020 | Esperienze & Opinioni

Amare e prendersi cura di qualcuno con demenza può essere difficile. Forse, è una delle ...

Nuovo farmaco previene le placche amiloidi, un segno specifico di Alzheimer

8.03.2021 | Ricerche

Le placche di amiloide sono caratteristiche patologiche del morbo di Alzheimer (MA): son...

Capire l'origine dell'Alzheimer, cercare una cura

30.05.2018 | Ricerche

Dopo un decennio di lavoro, un team guidato dal dott. Gilbert Bernier, ricercatore di Hô...

Scoperto il punto esatto del cervello dove nasce l'Alzheimer: non è l…

17.02.2016 | Ricerche

Una regione cruciale ma vulnerabile del cervello sembra essere il primo posto colpito da...

Scoperto perché l'APOE4 favorisce l'Alzheimer e come neutralizzarlo

10.04.2018 | Ricerche

Usando cellule di cervello umano, scienziati dei Gladstone Institutes hanno scoperto la ...

Demenza: mantenere vive le amicizie quando i ricordi svaniscono

16.01.2018 | Esperienze & Opinioni

C'è una parola che si sente spesso quando si parla con le famiglie di persone con demenz...

10 Consigli dei neurologi per ridurre il tuo rischio di demenza

28.02.2023 | Esperienze & Opinioni

La demenza colpisce milioni di persone in tutto il mondo, quasi un over-65 su 10. Nonost...

Come dormiamo oggi può prevedere quando inizia l'Alzheimer

8.09.2020 | Ricerche

Cosa faresti se sapessi quanto tempo hai prima che insorga il morbo di Alzheimer (MA)? N...

Scoperta nuova causa di Alzheimer e di demenza vascolare

21.09.2023 | Ricerche

Uno studio evidenzia la degenerazione delle microglia nel cervello causata dalla tossicità del ferro...

Dare un senso alla relazione obesità-demenza

2.08.2022 | Esperienze & Opinioni

Questo articolo farà capire al lettore perché l'obesità a volte può aumentare il rischio...

Che speranza hai dopo la diagnosi di Alzheimer?

25.01.2021 | Esperienze & Opinioni

Il morbo di Alzheimer (MA) è una malattia che cambia davvero la vita, non solo per la pe...

Ritmi cerebrali non sincronizzati nel sonno fanno dimenticare gli anziani

18.12.2017 | Ricerche

Come l'oscillazione della racchetta da tennis durante il lancio della palla per servire un ace, l...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

Seguici su

 
enfrdeites

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.